
Information Research Communications, 2024; 1(2):104-119.
https://inforescom.org Research Article

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024104

DOI: 10.5530/irc.1.2.13

Copyright Information :

Copyright Author (s) 2024 Distributed under

Creative Commons CC-BY 4.0

Publishing Partner : ScienScript Digital. [www.scienscript.com.sg]

Comparative Study on Oracle, Neo4J, Cassandra, Redis, and
MongoDB
Sathishkumar Veerappampalayam Easwaramoorthy*, Klaudia Ong Yun Xuan, Laksamana Putra, Ng Chi Ern,
Tan Jun Sheng

School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, MALAYSIA.

ABSTRACT
Database models are an essential part in defining how database systems store and manage
their data. Database models can have multiple forms and it might cause confusion on selecting
the appropriate model for their needs. Thus, this paper helps to examine the performance
mechanism of various database models, including Oracle, Neo4J, Cassandra, Redis and MongoDB
by identifying their key characteristics and concepts of each model to provide a comprehensive
guide for readers regarding database selection. The research methodology incorporates
academic references to contribute to creating an evaluation framework for comparison analysis
of each model. The comparison framework takes several aspects of data security, data retrieval,
data creation and data manipulation into consideration to facilitate in-depth comparison. Our
findings reveal that each model has its own strength and uniqueness. In terms of data integrity
and access control, Oracle stands out among others because of its strong mechanism. However,
Neo4J excels in data creation and fast data retrieval using its record searches whilst Cassandra is
best at controlling large data volumes. As for data manipulation, Oracle supports reliability while
Cassandra focuses on scalability and nodes distribution. MongoDB as well as Redis also perform
strong scalability through their sharding features.

Keywords: Comparison, Data, Evaluation, Framework, Performance.

INTRODUCTION

Database is an important factor that can contribute to the success
or failure of a business. They consist of collection of data, saved in
a systematic and organized structure to serve a specific purpose
(Goldmeier, 2024). The data structure can come in different
models such as relational model, graph-based model, key-value
model, document model, or wide-column model. It is used to
define database structures that are formed based on a collection
of concepts. They contain entities, relationships and attributes
that represents real-world concept. It can represent relationship
between an employee to a manager or an organization to their
client. In short, data models can be described as frameworks of
databases that usually used to store data in a database management
system (Elmasri & Navathe, 2016). However, due to its variations,
it might cause confusion to people to choose the most appropriate
database models. Thus, leads to this paper which aims to assess
each database model based on several factors as the threshold. It
will involve a thorough analysis of database models’ performance
and their scalability ratio. The analysis conducted will provide

insights to guide readers in selecting the better overall performance
database models based on users’ needs. Resulting to easier
progress in striving for organizational business objectives and
better decision-making processes. To highlight the importance
of data integrity and data security, oftentimes, database models
contain vital information about a company which can only be
retrieved by authorized users within the company, if necessary.
Such as when the users share their data model content, only some
users or user groups are given access to edit classified information
like bonuses or salaries, while the others are only allowed to view
the data. This is to prevent unauthorized access or modifications
to the restricted data which is the purpose of data security. Data
security is an attribute of a database management system that
prevents illegal access to the content inside the database. It usually
involves an authentication mechanism or data encryption, which
is used to add another protection layer by creating passwords
or coding algorithm layer that needs to be deciphered before
being able to access the data. These data security features are
then frequently checked and maintained in database audits to
check for the existence of unauthorized operations. This type of
access operation is facilitated by database management systems
to manage, create and regulate database access/control to people
who are responsible for maintaining data consistency, integrity
and data security. Moreover, data integrity is an important
factor in ensuring reliable and consistent database models.

Received: 09-11-2024;
Revised: 29-11-2024;
Accepted: 15-12-2024.

Correspondence:
Dr. Sathishkumar Veerappampalayam
Easwaramoorthy
School of Engineering and Technology,
Sunway University, No. 5, Jalan Universiti,
Bandar Sunway-47500, Selangor Darul
Ehsan, MALAYSIA.
Email: sathishv@imail.sunway.edu.my

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 105

Upholding data consistency could significantly contribute to
higher data accuracy. The consistency of data within the database
is maintained by enforcing integrity constraints such as unique
primary key constraints and referential integrity constraints to the
data models (Elmasri & Navathe, 2016). Nevertheless, it can be
challenging for stakeholders into decide which database model to
incorporate to the company as each data model can have different
access control and constraint mechanisms. Therefore, this paper
aims to provide readers with a comprehensive understanding
and a detailed analysis of a variety of database models, including
relational models and not only SQL (NoSQL) models. Grasping
the concept, benefits and disadvantages of the processes that
each model underlines will provide us with the knowledge to be
well-prepared to make an informed decision. In this study, we
aim to address these objective questions:

RQ1. Which database model is suitable for different characteristics
in of application scenario?

RQ2. What are the key differences between relation databases
and a nonrelational database?

RQ3. What are the strengths and weaknesses based on several
factors for comparison?

LITERATURE REVIEW

Database Model Aspects

A foundation for tackling issues of managing data is provided
by Database Management Systems (DBMS), which are made
to manage and oversee databases. This allows organizations to
manage, organize and use their data with ease. Data management
systems include several integral aspects that ensure a successful
process, which are data creation, data manipulation, data retrieval,
access control and data integrity. DBMS allows users to create
database through its data creation, or Data Definition Language
(DDL). DDL is used to define database views and storage
structures, e.g. creating a table and altering a table (Punit et al.,
2024). Another similar feature of DBMS is data manipulation
using Data Manipulation Language (DML). Examples of data
manipulation are inserting, update and delete functions (Punit
et al., 2024). A subset of DML known as Data Query Language
(DQL) is responsible for the SELECT statement. This command
is important in retrieving data from a table without resulting in
any changes to the table (Glimm & Horrocks, 2004). In massive
databanks, each user has different levels of authority to view
or edit data. To grant or revoke access for users to manage the
database, Data Control Language (DCL) is used to act as access
specifier (Fehily, 2020). Examples of statements used to manage
user control are GRANT and REVOKE. Lastly, ensuring data
integrity in databases requires maintaining the accuracy and
consistency of data over its lifecycle. To achieve this quality,
enforcing constraints at the database level (e.g. primary keys and
foreign keys) would maintain the validity of data. Moreover, using

Transactional Control Language (TCL) to control all transactions
of data would uphold the safe keeping of data. Examples of
commands from TCL are Roll Back (used to undo changes),
Commit (used to apply or save changes) and Save Point (used to
save data on a temporary databank in the database) (Punit et al.,
2024).

Data Model

Data model is an abstract representation of a database structure
that defines the real-world entities’ relationships and constraints
between entities (Sebastian-Coleman, 2022). Data models are
frequently represented by using different notations, which includes
Chen notation, Crow’s Foot notation and Unified Modeling
Language (UML) notation. The Chen notation, pioneered by
Peter Chen in 1976 developed the entity-relationship model
which differentiates entities, attributes and relationships with the
use of unique shapes (Chen, 1976). Crow's foot diagrams depict
entities as boxes and relationships as lines connecting the boxes
(Hammerschmied & Bork, n.d) .The shapes at the endpoints of
these lines show the relationship's relative cardinality. However,
this notation does not support attributes. Lastly, UML notation is
a more versatile language that can be used for various modelling
purposes, including Entity Relation Diagram (ERD). It is the
standard language for software development and documentation
that is effective at modelling large and complicated systems
(Alkoshman, 2015). Its cardinality is represented by characters
such as “1...1”. As data modelling is merely a visual depiction of a
system design intended for unified understanding of data, logical
data design and physical implementation can help developing a
more refined version of the model (Sebastian-Coleman, 2022).
A logical data model thoroughly explores the conceptual model.
For platform-independent implementation, it diagrammatically
expresses relationships, entity names and data restrictions. On
the other hand, physical implementation enhances the logical
data model for usage with a particular database system. To
facilitate effective data storage, retrieval and manipulation,
logical data models and physical implementations specify the
rules, organization and structure of the data.

Database Model

Nowadays, there are a variety of database model options available
to choose from, such as Oracle, Neo4J, Cassandra, Redis and
MongoDB. The flexibility of choosing different models based on
needs, allow users to meet their objective in an efficient manner
due to each of these database models has their own features that
distinguish them with each other.

Oracle (Relational Model)

Oracle provide a platform that assists users with creating
design, modifications and deployment of database applications
using web browser with minimal complexity to allow a more
beginner-friendly approach while maintaining robust features

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024106

(Baggia et al., 2018). In relation to that, Oracle is considered as
a relational database management systems due to its utilization
of table-form relation models. Relational model is a database
model that focused on managing relational databases. Relational
models are beneficial because it ensures reliability, robustness
and scalability. Data integrity in relational model is backed
by ACID properties that stands for Atomicity, Consistency,
Isolation and Durability (Jatana et al., 2012). Atomicity verifies
a valid transaction so there will be no partial transaction done.
Consistency ensures that database remain consistent throughout
the transaction. Isolation allows more than one transaction to be
done without affecting one another. Finally, durability ensures
that transaction records are saved permanently in the event of
system errors. Oracle uses SQL to create and modify data stored
in the Oracle database. Incorporating SQL in Oracle database
leads to easier quicker query as the nature of SQL as a simple,
beginner-friendly language. Furthermore, SQL statement such as
add, create, update and delete processed inside Oracle tools like
Oracle Apex will grant user influence for data creation and data
manipulation (Jatana et al., 2012). Oracle also integrated multiple
security layers at database level to mitigate unauthorized access
or modifications done within the database (Ilić et al., 2021). It will
create a secured environment for users to conveniently manage or
modify their database.

Neo4J (Graph Model)

Neo4J is a NoSQL database classified as graph databases. The
database follows the concept of mathematical tree concept where
each node and relationship within the ‘tree’ is stored with data
(Minder et al., 2024). Graph-based models in Neo4J are widely
used as a replacement for relational databases due to severe
limitations caused by relational databases. These limitations
include a fixed number of columns and table. Thus, it is mitigated
by using graph-based databases to allow more flexibility and
dynamic data (Minder et al., 2024). This versatility is the result
of a non-structured repository where the database nodes
manipulation is open-ended and does not require historical data
design, enabling higher scalability. Next, Neo4J follows ACID
behaviour to support consistent database transactions. Neo4J
also implement a high availability feature inside their system
by implying the master-slave cluster concept. The master-slave
concept works by creating two different partitions consist of
the database and required cluster components for management
purposes. The master cluster will then be taking the role of writing
operations. Aside from that, there are mechanism working
alongside the partitions to allow constant synchronization and
centralized control by prioritizing the master cluster (Lopez &
Cruz, 2015)

Cassandra (Wide-column Model)
Cassandra is a column-family NoSQL database created by Apache
Software that is written in Java (Abramove & Bernardino, 2013).
A column-family contains an unlimited number of columns
where the reading and writing is done by columns instead of
rows, allowing fast access (Čerešňák & Kvet, 2019). The model
ensures that the rows are indexed by primary keys without any
modification (Popescu & Radu, 2020). Cassandra often shows
similarity to a relational database in terms of their design and
implementation, like their data structure and tables (Okman et al.,
2011). Cassandra distributes their data to different nodes using
a peer-to-peer clustering architecture, allowing no downtime to
replace a failed node, providing high availability and scalability
(Abramove & Bernardino, 2013). Additionally, their effortless
scaling is also backed through native sharding and replication
mechanisms (Popescu & Radu, 2020). Cassandra’s transaction
support also utilizes ACID properties (Gundigara & Mehta, n.d).
Cassandra also uses their own query language known as CQL
(Cassandra Query Language) that is like SQL to provide a more
user friendly and structured way to manage data compared to
Thrift API, their base client (Okman et al., 2011).

MongoDB (Document Model)
MongoDB is a NoSQL that uses a document infrastructure to
store and retrieve data (Mehrabani, 2014). MongoDB relies on
Binary JavaScript Object Notion (BSON) files to store their data
which is commonly used and allows flexibility in the schema
of the database (“What is a Document Database?”, 2024). It has
great performance and scalability due to its features like sharding
and replication while handling large data structures (Mehrabani,
2014). MongoDB uses a replication procedure to create and
maintain multiple dataset copies across different server and this is
supported by their sharding concept to distribute it evenly across,
offering performance, scalability and availability (Mehrabani,
2014). MongoDB’s sharding concept is done through two scaling
methods: horizontal and vertical. The vertical scaling method
is done through the administrator increasing the resources and
capacity to existing server, horizontal scaling method increases
the server’s capacity by combining multiple separate servers
(Mohan et al., 2024).

Redis (Key-value Model)
Redis is an in-memory database model that uses key-value storage
system to provide high performance, replication and a unique
data model (Carlson, 2013). It supports multiple data structures
or variables such as lists, strings, hashes, sets and sorted sets
(Mohan et al., 2024). As it utilizes memory, it can execute data
request with higher performance as compared to disks because
of high throughput and low latency (Carlson, 2013). Redis uses
a single-threaded design written in ANSI-C that requires very
minimal memory to process client requests asynchronously

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 107

by overlapping network I/O processing (Zhang et al., 2015;
Chinnachammy, 2013). Redis availability when a server crash
or power off takes two forms: point-in-time dump, which takes
periodic snapshot of the entire dataset and save them to single
disk or append-only-file and that writes logs of every operation to
a file (Chen et al., 2016). Redis has also introduced a distributed
version called Redis Cluster that allows client-side sharding to
distribute data across multiple databases on client side (Zhang
et al., 2015). Additionally, Redis’ replication is done through a
master/slave process where the slaves receive a copy of the full
database when connected to the master (Carlson, 2013). Table 1
summarizes the database management aspects, data model and
database model discussed in our literature review.

METHODOLOGY

This section describes the methods and process we used for
our research, including literature review, conceptual synthesis
and result derivation. First, we search for relevant papers using
academic databases such as Google Scholar, ScienceDirect and
ResearchGate. We used specific keywords to find relevant research
articles and ensured their quality by assessing their research
methods and relevance to our study. Moreover, we investigated
their research strategy, data collection techniques and statistical
analysis results. We focus on studies with clear methods and
meaningful statistical results, which enables us to apply proven
approaches to our research content. These selected research

Table 1: Literature Review Summary

Summary of Literature Review
Data Model

An abstract representation of database structure
Chen Notation
The model differentiates entity, attribute
and relationships.
Cardinality can be represented with
numbers or letters.

Crow’s Foot
Depict entities as boxed and relationships
as line.
Does not support attributes.
Cardinality shown on Crow’s Foot
Symbol.

UML
A more versatile notation.
Effective at large modelling system.
Cardinality is represented as characters.

Logical Data Model
Diagrammatically expresses relationships, entity names, and
data restrictions.

Physical Implementation
Specify the rules, organization, and structure of the data.

5 Common Data Models
Oracle (Relational
Model)
Utilize of table-form
relation models
ACID properties
Uses SQL language to
create and modify data
Integrated multiple
security layers.

Neo4J (Graph Model)
Formed the base of
graph with relationships
and nodes
Database node
manipulation is
open-ended (versatile)
ACID properties
Implying Master-slave
cluster concept.

Cassandra
(Wide-column model)
Writing is done by
columns
Use peer-to-peer
clustering architecture
Sharding and
replication mechanism
to backup
ACID properties
Uses CQL language to
manage data.

Redis (Key-value
model)
Uses key-value storage
system
Single threaded design
written in American
National Standard
Institute (ANSI-C)
Use point-in-time dump
or append-only file to
backup
Use client-side sharding
Replication through
master-slave process.

MongoDB (Document
model)
Uses a document to
retrieve data
Rely on BSON files to
store
Great performance with
sharding and replication
techniques
Two sharding method:
Vertical: Increase
resources and capacity.
Horizontal: Increases
the server’s capacity
by combining multiple
separate servers.

Database Management Aspect
Include several integral aspects to let the user manage data with ease

DDL (Data Creation)
Defines database design
and structure.

DML (Data
Manipulation)
Manipulation of data
within a database.

DQL (Data Retrieval)
Querying data within a
database.

DCL (Access Control)
Manage data retrieval
operations.

TCL (Data Integrity)
Control database
transactions.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024108

papers provided a solid foundation for our analysis. To manage
our research effectively, we divided tasks among group members.
Each member was assigned specific tasks such as searching for
articles, evaluating sources, or integrating findings. We held
regular meetings to discuss our progress and shared valuable
insight. All findings were documented in a shared document and
each member reviewed others’ work to provide feedback and
ensure accuracy. Teamwork was crucial throughout this process,
especially when facing challenges. We worked together and
helped each other overcome obstacles, making sure that all parts
of the research were covered. Next, we categorized the literature
findings into themes relevant to our research questions. This
includes summarizing key points and identifying patterns. We
looked for comparisons and contrasts in the methods and results
of the selected papers to identify the common themes. Then, we
make a simple table to organize the collected information. We
focused on key aspects like data creation, data manipulation,
data retrieval, access control and data integrity and explained
these concepts through several scenarios. We created a robust
framework for our analysis by using examples and criteria from
the reviewed paper. This framework allows us to evaluate the
strengths and weaknesses of each data model based on established
academic standards. Based on the combined information, we
derived our results by bringing together insights from multiple
studies. This method allowed us to draw a strong and reliable
conclusion. This approach ensured that our findings were well
supported and reliable, providing a strong base for further
research and discussion. Figure 1 illustrates a flowchart of our
methodology steps.

RESULTS

Databases that are both consistent and connected, as well as
management that is both effective and efficient, are critical
concerns in the modern information technology era (Khan et al.,
2023). Following the associated procedure, we categorized the
findings into five main categories- Access Control, Data Integrity,
Data Creation, Data Manipulation and Data Retrieval. These
categories will evaluate how different data models influence the
mechanisms.

Access Control and Data Integrity

Access control and data integrity are considered as one of the
most important measures of DBMS security. Table 2 provides
the basic security mechanism characteristics of Oracle compared
to another DBMS concluded by Ilić et al. (2021). Oracle has a
strong security mechanism. Access control in Oracle is achieved
through strong authentication mechanisms. As Ilić et al. (2021)
has stated for Table 2 “this table highlights that Oracle confirms
user identity at the database level and bases this confirmation
on operating system roles” (Ilić et al., 2021). Unlike the others,
this multi-layer security ensures that only authorized users can
access the database and prevent unauthorized access easily.

Figure 1: Methodology Steps.

Table 2: Oracle Security Mechanism

Security
features

Microsoft SQL
Server

Oracle

Security type Simple security Multi-layer security
Authentication. User authentication

at the instance level
and at the database
level.

Confirmation of
user identity at the
database level and
based on OS roles.

Database
sharing

Users cannot share
databases.

Users can share
databases.

Prone to errors
and data
corruption.

Chances are high. Chances are low.

Types of
backups.

Full, partial and
incremental.

Full, partial,
incremental and
differential.

Sources: Ilić et al., 2021

Compared to others, Oracle has a strong mechanism in place of
data integrity. It is designed to minimize the chances of errors and
data corruption. As a result, Oracle has a low chance of errors and
data corruption. Moreover, Oracle supports a variety of backup
formats such as full, partial, incremental and differential backups.
These backup options are crucial elements for restoring data if it
is loss or corruption and ensure that the data can be recovered
precisely when needed.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 109

For graph databases like Neo4J were not designed with solid
security features. Neo4J does not have data-level security and
data encryption (Gupta & Agrawal, 2018). However, Neo4J
offers a new plug-in architecture that allows users to build
and deploy customauthentication and authorization controls.
Figure 2 illustrates the enhancement of third-party tools such
as blockchain on the database security mechanism Blockchain
is a reliable third-party tool. Figure 2 is a simple representation
of a blockchain-based system specifically designed for graph
databases. By leveraging blockchains unique characteristics,
Shkokani and Altamimi (2020), proposed that this tool addresses
the security gaps in graph databases especially against analytic
attack. Blockchain only allows authorized users to access and
its cryptographic algorithm plays an important role in assuring
data security. Table 3 summarizes the security mechanisms for
various databases in terms of data integrity and access control
by Noiumkar and Chomsiri (2014). MongoDB, Cassandra and
Redis have a common data integrity problem which is there is no
data files encryption. The developer can only protect the database
by encrypting the data in application level before recording them
into the data files. Another way for the developer is to add an
appropriately determined permission in an operating system to
prevent data hacking from the unauthorized users. In terms of

access control, MongoDB and Cassandra have weak performance
in client/server authentication and inter-cluster authentication
that requires different specified requirements to activate the
authentication, which indicates that they have ineffective security
mechanisms (Okman et al., 2011). Tables 4 and 5 provide the
security control mechanism for MongoDB and Cassandra.

Redis, on the other hand, has no encryption for both
authentications. This means anyone can access and get the value
if the key is known because the data is stored in the form of
key value pair. It does not provide enough security for the data.
Significantly, Redis is more vulnerable to attacks. There is no
statistical data that mentions that Redis have been attacked by
Script Injection or Denial of Service.

Data Retrieval
Data retrieval is crucial for database query performance. It affects
how quickly and efficiently users can access the information
when required. Effective data retrieval mechanisms ensure
faster and more precise query results. To analyse Oracle’s data
retrieval performance, we have made conclusion based on several
research papers. The performance results for Oracle were done by
Čerešňák and Kvet (2019) and Kolonko (2018). Kolonko (2018)
has run some tests for Oracle and MongoDB with 6 defined

Table 4: MongoDB Security Mechanism.

Category Status Recommendations
Data at rest. Unencrypted. Protect with OS level mechanisms.
Authentication for native connections. Available only in unsharded

configurations.
Enable if possible.

Authentication for native connections. READ/READ-WRITE/Admin levels, only
in unsharded configurations.

Enable, if possible, requires enabled
authentication.

Auditing. Not available in MongoDB.
AAA (authentication, authorization
auditing) for RESTful connections

User and permissions are maintained
externally.

Available if configured on a reverse
proxy.

Database Communication Encryption is not available.
Injection attacks. Possible, via JavaScript or string

concatenation.
Verify that the application does
reasonable input validation.

Sources: Okman et al., 2011.

Table 3: Summary of Nosql Security Mechanism.

Security Issues Databases

MongoDB Cassandra CouchDB Hypertable Redis
Data files encryption No encrypt No encrypt No encrypt No encrypt No encrypt
Client/Server Authentication/
Encryption

Weak Weak SSL No authen/no
encrypt

No authen/no
encrypt

Inter-cluster Authentication/
Encryption

Weak Weak SSL No authen/no
encrypt

No authen/no
encrypt

Script Injection Vulnerable Not vulnerable Vulnerable Not vulnerable Not vulnerable
Denial of service attack Not vulnerable Vulnerable Vulnerable Not vulnerable Not vulnerable

Sources: Noiumkar & Chomsiri, 2014.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024110

Figure 2: Example of Blockchain. (Shkokani & Altamimi, 2020).

workloads. However, we only take 1 workload as our observation
with 3 main operations in it. (Read, Read-Modify-Write, Update)
The workload is defined as:

Read operations-total of 1000 operations summed as 500 reads in
the workload definition and 500 reads from read-modify-writes.

Read-modify-write operations-total of 500 read-modify-writes.

Updates-total of 500 writes from read-modify-write.

Table 6 provides the comparison of operation (Read,
Read-Modify-Write and Update) performance. Table 6
demonstrated that Oracle has a significantly longer runtime
(8446 ms) compared to MongoDB. Besides, Oracle’s throughput
is much lower at 118.4 ops/sec. As it is visible in Table 6, Oracle
shows considerably higher latencies and less performance in
Read, Read-Modify-Write and Update operations compared
to NoSQL databases. Additionally, Čerešňák and Kvet (2019)
tested Oracle query performance with a variety of databases.

Table 5: Cassandra Security Mechanism.

Category Status Recommendations
Data at rest. Unencrypted. Protect with OS level mechanisms.
Authentication for native connections. The available solution isn’t production

ready.
Implement a custom IAuthentication
provider.

Authentication for native connections. Done at the CF granularity level. The
available solution isn’t of production
quality.

Implement a custom IAuthority provider.

Auditing. Not available OOTB. Implement as part of the authentication
and authorization solution.

AAA (authentication, authorization
auditing) for RESTful connections.

Encryption is available. Enable this using a private CA.

Database Communication. No encryption is available. Add packet-filter rules to prevent
unknown hosts from connection.
Re-implement the Thrift server-side to
use the SSL transport in Thrift 0.6. Add
timeouts for silent connections in the
Thrift server side, and cap the number of
acceptable client connection.

Injection attacks. Possible in CQL. If using the Java driver, prefer Prepared
Statements to Statements. Always
perform input in the application.

Sources: Okman et al., 2011.

Figure 3 and Table 7 shows the overview of the result time for
relational databases and nonrelational database. This result was
expected due to differences in data storage methods. Relational
databases like Oracle need normalized data to avoid duplicity and
redundancy. While normalization helps manage data effectively,
it also hampers performances, leading to longer query times.
Next, Neo4J as a graph database has an easily mutable schema.
It is flexible to restructure the entire schema every time a new
relationship added. Due to its structure, Neo4J able to find the
nodes that meet the search criteria instead of searching the whole
data set. Moreover, it only looks at the records that are directly
connected to other records. Therefore, when the datasets become
larger, it will not significantly increase the retrieval times. This
will be proven with an experiment conducted by Batra and Tyagi
(2012) on Neo4J data retrieval compared to Oracle. Figures 4 and
5 provide the experiment implementation details and result. It can
be observed that the retrieval times of graph databases (Neo4J)
are less than relational databases (Oracle). And increasing the

Figure 3: Query performance in miliseconds. (Čerešňák & Kvet, 2019).

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 111

number of nodes from one hundred to five hundred does not
significantly increase the retrieval time for Neo4J. Following,
we use the result of Yahoo! Cloud Serving Benchmark (YCSB)
benchmark test tested by Abramove and Bernardino (2013)
to conclude our Cassandra database. The scenarios tested are
read, write and update operations performed on randomly
chosen records. Because our focus is on several operations, some
workloads will not be used. The used scenarios are:

Workload C: Read only. This workload is 100% read.

Workload F: Read-modify-write. In this workload, the client will
read a record, modify it and write back the changes.

Workload H: Update only. This workload is 100% updated.

Figure 4: Implementation details. (Batra & Tyagi, 2012).

MongoDB
Workload F

Total runtime: 839 ms
Throughput: 1191.90 ops/sec

Average
latency [µs]

434.29 1073.04 445.24

Min latency
[µs]

82.0 234.0 147.0

Max latency
[µs]

155755.0 186239.0 14495.0

95th percentile
latency [µs]

537.0 1339.0 770.0

99th percentile
latency [µs]

1031.0 2175.0 1604.0

Oracle
Workload F

Total runtime: 8446 ms
Throughput: 118.40 ops/sec

Average
latency [µs]

2967.66 1110.91 8633.53

Min latency
[µs]

83.0 4312.0 4112.0

Max latency
[µs]

565247.0 24111.0 19663.0

95th percentile
latency [µs]

4155.0 14447.0 10479.0

99th percentile
latency [µs]

4591.0 15127.0 11271.0

Sources: (Čerešňák & Kvet, 2019).

Table 7: Query performance of databases with 100000 records in
milliseconds.

Type/
Operation

Oracle MySql MsSql Mongo GraphQL Cassandra

Insert 0.091 0.038 0.093 0.005 0.008 0.011
Update 0.092 0.068 0.075 0.009 0.012 0.014
Delete 0.119 0.047 0.171 0.015 0.018 0.019
Select 0.062 0.067 0.060 0.009 0.011 0.014

Sources: (Čerešňák & Kvet, 2019).

Table 6: Comparison of operation performance.

Figures 6-8 illustrates the operation (Read, Read-Modify-Write,
Update) results for Cassandra compared to MongoDB. In Figure
6, Cassandra has 1.75 faster speed than MongoDB when using
700k records in Workload C. In Figure 7, Cassandra is 1.8
faster than MongoDB when using 700k records in Workload
F. Surprisingly, Figure 8 shows Cassandra has greater results
compared to MongoDB with 25 to 43 times better in Workload H.

In Figures 6 and 7, we can observe that Cassandra has weaker
performance than MongoDB when processing 100K records.
However, the performance of Cassandra improved simultaneously
with increasing data sizes in read operations and read-modify-
write operations. Cassandra has better execution time with
high volume of data. In Figure 8, Cassandra has stable and well
performance regardless of database size when it comes to upload
operation. With other experiment conducted as well, Abramove
and Bernardino (2013) has concluded that Cassandra shows the
best result for almost every scenario.

To evaluate MongoDB and Redis performance, Mohan et al.
(2024) has conducted a test of multiple databases across a broad
range of data volumes.

Figure 9 illustrates the query execution time for MongoDB. This
is due to MongoDB’s inbuilt sharding capabilities, which support
horizontal scaling. It allows MongoDB to handle amount of data

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024112

sets and maintain high output by distributing data across multiple
shards.

Although Mongo’s scaling is high, its performance may begin to
degrade and show poor results as the volume of data grow beyond
certain limits. This can be proven with the previous experiment
by Abramove and Bernardino (2013) and shown in Figures 6-8.

In the same experiment, Redis takes longer to execute the queries
compared to other databases. Figure 10 illustrates the query
execution time for Redis. In Figure 10, Redis shows a best-case
scenario of taking 3x shorter in sf1, smaller dataset. However, the
performance of Redis reduces when the datasets become bigger.
It is because Redis suffers from the data schema. Assigning all
features to a single key makes each record very large, which will
slow down query execution and increases central processing unit
(CPU) usage.

Data Creation

Data creation ensure that the data inserted is correctly formatted
and saved in a way that maintains the structure of the database. In
our result, we will use data loading as our key observation value.
Data loading is a critical component of data creation. Effective
data loading essential for maintaining database consistency and

optimal performance as data volumes increase and the system
scales.

Oracle performs well in large volumes of data from flat files.
Oracle database has a file bulk loading mechanism, SQL*Loader.
It is a command-line tool for Oracle designed to improve data
loading into Oracle database. The SQL* Loader is used to import
massive data into the database in parallel when the burst data is all
stored in the form of files. Additionally, it supports various data
formats and control files for mapping data to database structures.
It also tracks errors and creates records of successful and failed
data loads (Liu et al., 2022).

For Neo4J, Gupta and Agrawal (2018) mentioned that it delivers
lightning-fast read and write performances while still protecting
data integrity. As mentioned earlier, Neo4J has the advantage
of providing the opportunity to build new applications. This
database is queried through Cypher Query Language. The cypher
language allows efficient query execution and update of graph
database. It provides flexibility for complex data loading scenario
(Francie et al., 2018).

To evaluate Neo4J data loading, we will take the result from
Rosberg (2022) Tables 8 and 9 provides the data loading test with
Neo4J performed by Rosberg (2022).

We can observe that Neo4J perform efficient data loading
capabilities. The average time to load relationships and rows
increases moderately with the volume of data. It takes about 1.58
sec to load 100000 relationships and 0.77 seconds to load 100000
rows. This experiment has concluded that Neo4J is a quite fast
and scalable for handling large datasets loading.

When it comes to data loading times, Cassandra’s architecture
provides significantly to its fast data loading capabilities. Data is
first written to a commit log to ensure data durability. Then, data
is indexed and written into a memTable, an in-memory structure.
After the memory structures become full, data is written in the
form of a SSTable data. This process keeps the write operations

Figure 5: Experiment results. (Batra & Tyagi, 2012).

Figure 6: Read operation results. (Abramove & Bernardino, 2013).
Figure 7: Read-Modify-Write operation results. (Abramove & Bernardino,

2013)

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 113

fast, resulting in the relatively short data loading times (Jyothi,
2022).
Table 10 summarizes the load times for different datasets across
different databases; this can be referred for MongoDB and Redis’
data loading time.

We can observe that MongoDB has longer data loading times.
Due to increased indexing and write operations overhead and
its limited sharding capabilities have possibility led to increased
data ingestion. MongoDB’s reliance on memory-mapped files for

Figure 8: Update operation results. (Abramove & Bernardino, 2013)

Figure 9: Query execution time for MongoDB. (Mohan et al., 2024)

Table 8: Import Nodes.

Number of
row (n)

First test
(s)

Second
test (s)

Third
test (s)

Average time
(s)

100 0.012 0.016 0.011 0.013
1000 0.033 0.023 0.02 0.02533333333
10000 0.052 0.045 0.047 0.048
50000 0.272 0.23 0.282 0.26133333333
100000 0.996 0.683 0.623 0.76733333333

Sources: Rosberg, 2022.

Table 9: Import Relation.

Number of
row (n)

First Second Third Average

100 0.043 0.029 0.023 0.03166666667
1000 0.055 0.046 0.047 0.04933333333
5000 0.082 0.083 0.086 0.08366666667
10000 0.213 0.246 0.203 0.2206666667
50000 0.754 0.784 0.704 0.7473333333
100000 1.437 1.582 1.732 1.583666667
309357 5.217 5.288 5.363 5.289333333

Sources: Rosberg, 2022.

Table 10: Data loading time.

Databases SF1 SF2 SF3 SF4 SF5
PostgresSQL 37s 275s 857s 1089s 1481s
MongoDB 90s 1250s 1701s 2275s 2810s
ArangoDB 295s 2249s 3964s 12169s 15162s
Redis 1495s 3245s 5023s 7748s 10289s
Apache Kudu 42s 95s 146s 192s 240s

Sources: Mohan et al., 2024.

storage may result in higher disk I/O operations and worse write
performance as dataset sizes increase (Mohan et al., 2024).

In the same experiment, Redis displays the slowest performance
in data loading times across all datasets, which can be referred to
in Table 10. The authors aggregated data features into a single list,
resulting in records with a single key and 40 value. Since Redis
is single threaded, it requires two operations for each insertion.
With data scaling, it will increase the load time for Redis (Mohan
et al., 2024).

Data Manipulation

Data manipulation is a vital mechanism in databases to ensure
data is easily accessible and manageable. It supports flexibility
and scalability as the data growth when an organization expands.

Oracle has two architectures to consolidate data manipulation
capabilities to ensure the data is always available, consistent and
protected during complex operations.

Data Guard is a high availability, data protection and discover
recovery architecture. It provides simplicity, performance and
reliability. It helps offload backup work from production database
while protect against data loss and downtime at the same time.
Data Guard will automatically resynchronize (resynch) the
standby using archived redo generated at primary database if
there is any failure (Nawaz & Soomro, 2013). Figure 11 illustrates
an Active Data Guard.

Besides that, Oracle also offers backup recovery architecture
called Real Application Clusters (RAC). RAC is a cluster database

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024114

with a shared cache architecture that provides highly scalable
and available database solutions. It protects against hardware
failures and operating system or server crashes. In the case of
node failover, service connections are seamlessly redirected to
another node, users can continue to access the service (Kadam
et al., 2011).

Neo4J excels in handling complex relationships and large
volumes of connected data. Neo4J has high availability due to
its unique characteristics, master-slave cluster (Lopez & Cruz,
2015). It follows a non-structured repository model, which allow
for flexible manipulation of nodes. The performance of Neo4J is
outstanding as it seeks on the set of nodes linked, providing a
shorter path for queries (Blimm & Horrocks, 2004).

However, Neo4J has weaknesses in data manipulation. It struggles
with horizontal scalability compared to other database systems
and has an upper limit on the size of the graph. Neo4J’s writing
performance can be bottleneck, especially for very heavy writing
operations. It requires the ability to distribute data across multiple
machines. Moreover, Neo4J can be resource-intensive in memory
and CPU usage. Large graphs and complex queries can consume
major memory (Pokorný, 2015).

Following, Cassandra is a highly scalable database that can
manage large amounts of data across many commodity servers.
It ensures high availability with a symmetric architecture that
has no single point of failure and replicates data across multiple
nodes. Figure 12 illustrates Cassandra’s data replication process.
Cassandra uses the Gossip Protocol, a peer-to-peer mechanism
to allow the nodes to communicate and detect any faulty nodes in
the cluster (Gundigara & Mehta, n.d).

To evaluate Cassandra scalability, Popescu and Radu (2020)
have tested it with other databases in benchmarking with YCSB
framework. Table 11 summarizes the results of the benchmark
throughput and latency.

Cassandra delivers the highest performance across all dataset
sizes. Cassandra has the lowest latency with below 70 milliseconds
even at a massive 1TB scale. Overall, Cassandra demonstrated the
most consistent and impressive scalability in intensive read-write
workloads on huge dataset.

MongoDB offers high scalability and performance for handling
large-scale deployments. It leverages capabilities to achieve low
latency which can be noticed in the Table 11 as well. MongoDB
improves reliability and support horizontal scaling with two
distribution models. Firstly, MongoDB supports replication
through replica sets. These replica sets create multiple copies
of data on different servers, to ensure data redundancy and
high availability. In addition, automatic failover keeps the

Figure 10: Query execution time for Redis. (Mohan et al., 2024)

Figure 11: Active Data Guard. (Walters, 2011)

Figure 12: Data Replication in Cassandra. (Gundigara & Mehta, n.d)

Figure 13: Sharding techniques (Shuang, 2019).

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 115

system running smoothly. It enhances reliability and minimizes
downtime (Panpaliya, 2012).

Apart from that, sharding techniques are used by MongoDB to
achieve data distribution and load balancing. This technique
divides data into smaller chucks among several nodes. It allows
multiple nodes to manage to read and write requests concurrently,

which will improve performance and scalability (Shuang, 2019).
Figure 13 illustrates the sharding techniques.

Lastly, Redis is a powerful in-memory database that support
various data manipulation operations. It excels in fast-read
operations and can effectively modify large objects with low latency
(Chen, 2016). Redis has an extensive range of data structures

Table 12: Strength and weaknesses for comparison.

Factor Oracle (RDBMS) Neo4J (Graph) Cassandra (wide
column)

MongoDB
(Document-Oriented)

Redis (Key-value)

Security Strong with user
identity at database
level and role
authority.
Strong access
control.

No data-level
security and
encryption.

No data-level
security and
encryption.
Work performance
in client/server
and inter-cluster
authentication.

No data-level security
and encryption.
Work performance
in client/server
and inter-cluster
authentication.

No data-level
security and
encryption for
authentication.

Data Retrieval Slowest, with stable
and predictable
times.
(slower than
non-RDBMS).

Good for data
retrieval as it does
not scan the whole
graph.

Good for read-only,
read-modify-write,
update only.
Performance
improves as data
size increases.

Good performance in
execution speeds.

Slower execution
conquered to
NoSQL.
Performance
reduces when
dataset size
increases.

Creation Performs well with
large data volumes
from flat files.

Performs well
for rapid data
ingestion.

Fast loading
times due to its
architecture.

Long data loading times
due to limited sharding.

Slowest data
loading times due
to single threading.

Manipulation Supports vertical
and horizontal
scalability.
High availability,
data protection and
isolation.

Struggles with
horizontal
scalability, having
upper limit on size
of graph.
High availability
through
master-slave cluster
architecture.

High scalable across
many commodities
servers.
High availability
due to symmetric
architecture with
low failure.

High scalable through
sharding.
Availability through
primary node selection.

High scalable
through
distribution of
nodes.
High availability.

Table 11: Benchmark throughout and latency.

Database 10GB 100GB 1TB
MongoDB Throughput: 15,000 ops/sec Throughput: 18,500 ops/sec Throughput: 22,000 ops/sec

Latency: 68 ms Latency: 72 ms Latency: 82 ms
Cassandra Throughput: 18,200 ops/sec Throughput: 24,000 ops/sec Throughput: 29,000 ops/sec

Latency: 52 ms Latency: 58 ms Latency: 62 ms
HBase Throughput: 12,000 ops/sec Throughput: 16,300 ops/sec Throughput: 17,200 ops/sec

Latency: 78 ms Latency: 86 ms Latency: 92 ms
Couchbase Throughput: 10,500 ops/sec Throughput: 14,800 ops/sec Throughput: 17,200 ops/sec

Latency: 72 ms Latency: 78 ms Latency: 83 ms

Sources: Popescu & Radu, 2020.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024116

and includes basic operations available in Redis Enterprise. It
is an enhanced version of Redis. It expands Redis capabilities
to high availability with features like active geo-replication and
operation-based CRDT (House et al., 2021).

Although Redis can perform reliably as a single-node service, its
clustering service faces challenges with reliability and scalability
based on the summary given by (Spal & Kaur, 2018). Decentralized
design can lead to performance issues due to an inefficient data
indexing mechanism. Additionally, node failures are more
common in the distributed setup. Redis’s partial synchronization
strategy also carries the risk of data loss during system crashes.

Scenarios

The following scenarios will allow readers to understand the
different models and their mechanisms better in different
applications. For example, comparing a hospital database system
and a social media database system. Both databases share a
common characteristic to manage large volumes and time-critical
data, requiring quick data performance and high security.

Social media generates a large unmeasurable volume of data,
known as big data to most. That is because of their constant
real-time users throughout the day, who are generating billions
of data every second. In this case, database models like Neo4J,
Cassandra and MongoDB would be much suited as they have
high-performing data creation and retrieval that can handle the
real-time large volume of data, as compared to Redis and Oracle.
However, if we were to look at a hospital database, they would
require a high to medium query performance, especially since
hospitals are not constantly creating or retrieving data daily and
does not carry as much volume of data as social media. In this
case, any of the five models would be suitable for use as their data
creation and retrieval are on par.

However, when taking data security into consideration, the
model selection for a hospital database would narrow down
to Oracle. This is because Oracle has strong access control and
multiple levels of authorization. It also uses ACID compliance
and revision control, ensuring no loss of validity for data. The four
NoSQL models on the other hand tend to have weaker data-level
security and encryption, making personal data vulnerable.
Similarly, security would be a concern for social media data as
well, however social media personal data are less risky compared
to a hospital’s, hence Neo4J, Cassandra and MongoDB can still be
used with blockchain implementation to enhance security.

If we look at an application caching, Redis would be the suitable
model for it. This is because its in-memory store can allow
quick data manipulation and retrieval, as compared to the other
models. Oracle has a likely chance to encounter bottleneck while
the other models require a lot of query performance to ensure
efficiency. Redis also can scale up to enterprise availability and
scalability, however although it sounds ideal for a hospital and

social media database, Redis’ slow data creation is a loss for other
applications. Hence, it is mostly used for application cache, quick
response database and data analytics.

Objective Question

Based on the results above, we can answer our objective question
that was stated above, in the following:

RQ1. Which database model is suitable for different characteristics
in of application scenario?

Different application is ideal with certain model. Based on our
findings, we observed that Oracle is more suitable for critical
business data, especially where security is concerned. Neo4J is
most suited for cloud management and social networking. Both
Cassandra and MongoDB are ideal for social media, finance and
real-time systems. Lastly, Redis is preferable for quick-response
system such as e-commerce query search.

RQ2. What are the key differences between relation databases
and a nonrelational database?

Based on the studies presented in this research, RDBMSs are
slower when it comes to outright performance compared to
non-RDBMSs, at the cost of consistency. In addition, RDBMSs
are more suited for applications that call for strong data integrity,
whereas non-RDBMSs are more suited towards real time
applications that call for performance that delivers when needed
(Key-value), large-scale storage solutions (Wide-column),
network analysis (Graph) and content management or web
applications (Document-oriented).

RQ3. What are the strengths and weaknesses based on several
factors for comparison?

Table 12 summarizes the strengths and weaknesses for comparison
that answer our research question 3.

DISCUSSION

The comparison of these five database systems highlights the
factors to consider when selecting the right database solution for
any organization:

Security: Oracle offers the strongest data-level security with
access control, crucial for safeguarding sensitive user data for any
applied scenario.

Performance: Oracle is slower than NoSQL but has stable
performance. Neo4J is faster for simple and less complex queries.
Cassandra outperforms MongoDB while handling data growth,
but MongoDB handles most requests during scaling. Redis
performs the slowest, especially with large datasets.

Integrity: Oracle and Neo4J appears to be reliable for data
integrity. Oracle’s Data Guard feature ensures stability, while
Neo4J’s speed is crucial for ensuring isolation from underlying
corruption and speed respectively.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 117

Manipulation: Oracle and Cassandra highly support scalability
and data distribution, essential for user growth while maintaining
reliability. MongoDB and Redis also excel in scalability through
sharding and node distribution.

Therefore, these presented results imply several key insights:

The Need to Evaluate Trade Offs to Better Suit Needs
Each database system has own strengths and drawbacks across
each measured performance factor.

This implies there is no perfect database solution and organizations
need to carefully evaluate the pros and cons of each system to find
out what suits their business model and use case.

Complementary Solutions

Since the result yield shows that different database systems excel
in different areas, organizations might benefit from adopting
multi-database solutions where each strength of the database
systems can be used to address diverse requirements if needed.

Importance of Scalability

As active user counts increase globally, so does the amount of
data that is collected and used for business insights. Therefore,
scalability is an important factor to consider for organizations,
as it is paramount for them to accommodate increasing data
volumes and user base without hiccups.

Continuous Evaluation

As database technologies continue to evolve, organizations should
periodically evaluate their database solutions to ensure alignment
with evolving business needs and technologies.

Previous studies have provided insights into database security,
performance, integrity, availability and scalability. This research
extends these. This research builds upon and extends upon prior
research by comparing all 5 database models instead of a pair of
databases. These findings offer several contributions highlighting
the unique strengths of NoSQL and SQL models along with
RDMSs and non-DBMSs. Moreover, we learned about the
methods employed to ensure data integrity, such as sharding that
is employed by MongoDB to ensure scalability and Oracle’s Data
Guard which employs in memory database replication.

The limitations in the research paper includes resource constraints,
data model differences, and limited research on certain databases.
We faced difficulty in finding existing research and gathering
broad data information on certain models such as Neo4J and
Redis. Compared to other data model, Neo4J being relatively new
chapter in graph-based model domain. There is a limitation in
research on Neo4J available, making it difficult to find detailed

insights and experiences from researchers. Similarly, Redis has
fewer researchers compared to other models like Cassandra and
MongoDB. This lack of relative research may limit our ability to
provide deeper insights.

Another limitation is the variation in operations tested across
research. Some focuses on read operation, write operation,
update operations or mixed operations. This inconsistency
makes it difficult to determine which data model is good in query
performance, only assessing how well each model performs under
certain types of operations. This limitation hinders our ability to
draw a complete conclusion about the overall query performance.

As part of future work, we propose to focus on adding security
technologies into different data models to enhance data protection.
We also plan to explore new way to maintain data integrity such
as backup discovery. In term of query performance, we can apply
Artificial Intelligence (AI) and Machine learning technique to
discover predictive insights. The comparison of data availability
in on-premises and cloud-based environments is another area of
our interest. We are also interested in doing research on scalable
architecture designs that support the growth of data. Lastly,
research can be extended across various hybrid data models to
identify their implementations.

CONCLUSION

Consistent with our expectations, the primary outcomes of this
study are that each database system - Oracle, Neo4J, Cassandra,
MongoDB and Redis - are ideal in different scenarios, as
outlined in our analysis. This study contributes insights to
DBMS knowledge offering a practical guide for organizations
to optimize their database solutions. While our study provides
a solid foundation, future research should focus on emerging
technologies, such as graph databases and NoSQL variants,
to ensure that organizations are well-equipped to address the
evolving demands of data management.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ACKNOWLEDGEMENT

The authors of this paper appreciate the help given by individuals
and institutions that led to the completion of this research.
Researchers are grateful to lecturer Dr. Satishkumar VE for the
continuous feedback that contributed to the improvement of this
paper. Furthermore, researchers also extend their appreciation to
Sunway University for providing a holistic research environment
that fosters knowledge and academic growth.

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024118

ABBREVIATIONS

AAA: Authentication, authorization, auditing; ACID:
Atomicity, Consistency, Isolation, and Durability; AI: Artificial
Intelligence; ANSI-C: American National Standards Institute
C language; API: Application programming interface; BSON:
Binary JavaScript Object Notion; CA: Certificate authority; CF:
CompactFlash; CPU: Central processing unit; CQL: Cassandra
Query Language; CRDT: Conflict-Free Replicated Data Type;
DB: Database; DBMS: Database Management Systems; DCL:
Data Control Language; DDL: Data Definition Language; DML:
Data Manipulation Language; DQL: Data Query Language; ERD:
Entity Relationship Diagram; I/O: Input/Output; NoSQL: not only
SQL; OS: Operating system; OOTB: Out-of-the-box; RAC: Real
Application Cluster; RDBMS: Relational database management
system software; REST: Representational State Transfer; RQ:
Research question; SQL: Standard Query Language; SSL: Secure
Sockets Layer; SSTable: Sorted Strings Table; TCL: Transactional
Control Language; UML: Unified Modeling Language; YCSB:
Yahoo! Cloud Serving Benchmark.

REFERENCES
Abramove, V. & Bernardino, J. (2013). NoSQL databases: MongoDB vs Cassandra. C3S2E13:

International C* Conference on Computer Science and Software Engineering, Porto,
Portugal.10.1145/2494444.2494447

Alkoshman, M.M. (2015). Unified Modeling Language and Enhanced Entity Relationship:
An Empirical Study. International Journal of Database Theory and Application, 8(3),
215–227. https://doi.org/10.14257/ijdta.2015.8.3.18.

Baggia, A., Mali, A., Grlica, A., & Leskovar, R. (2018). Oracle APEX in Higher Education.
37th International Conference on Organizational Science Development, Portoroz,
Slovenia. https://www.researchgate.net/publication/324911051_Oracle_APEX_in_H
igher_Education

Batra, S., & Tyagi, C. (2012). Comparative Analysis of Relational and Graph Databases.
International Journal of Soft Computing and Engineering (IJSCE), 2(2). https://citesee
rx.ist.psu.edu/document?repid=rep1&andtype=pdf&anddoi=d9e4877d25fe413819
6719f5b64255f7d71c91b5

Carlson, J. (2013). Redis in Action (1st ed). Manning Publications. https://books.google
.com.my/books/about/Redis_in_Action.html?id=xjszEAAAQBAJ&redir_esc=y

Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a
non-relation database. Transportation Research Procedia, 40, 170–177. 10.1016/j.trp
ro.2019.07.027

Chen, P. P.-S. (1976). The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9–36. https://doi.org/10.1145/320434.
320440.

Chen, S., Tang, X., Wang, H., Zhao, H., & Guo, M. (2016). Towards Scalable and Reliable
In-Memory Storage System: A Case Study with Redis. 2016 IEEE Trustcom/BigDataSE/
ISPA. 10.1109/TrustCom.2016.0255

Chinnachamy, A. (2013). Redis Optimization How-to (1st ed.). Packt Publishing. https:/
/ebookcentral.proquest.com/lib/sunway/reader.action?docID=1215005

Elmasri, R., & Navathe, S.B. (2016). Fundamentals of Database Systems (7th ed.). Upper
Saddle River, NJ, USA: Pearson. https://www.auhd.edu.ye/upfiles/elibrary/
Azal2020-01-22-12-28-11-76901.pdf

Fehily, C. (2020). SQL Database Programming (Fifth Edition). USA: Questing Vole Press.
Francie, N., et al. (2018). Cypher: An Evolving Query Language for Property Graph. SIGMOD

'18: Proceedings of the 2018 International Conference on Management of Data. https://
doi.org/10.1145/3183713.3190657

Glimm, B., & Horrocks, A. (2004). Query answering systems in the semantic web. Oxford
University Research Archive. https://ora.ox.ac.uk/objects/uuid:7d3184ca-fd69-
4813-9e9e-4a9b593e1296/files/m7db6dbeb5578c838c0219322e513eca3

Gundigara, K.U., & Mehta, V.H. Cassandra as a Big Data Modeling Methodology for
Distributed Database System. International Journal of Engineering development and
research (IJEDR), 5(3). https://www.ijedr.org/papers/IJEDR1703135.pdf

Gupta, N., & Agrawal, R. (2018). Chapter Four-NoSQL Security. Advances in Computers,
Elsevier Science, 109, 101-132. 10.1016/bs.adcom.2018.01.003

Hammerschmied, G., & Bork, D. (2022). Multi-Notation Support for a Hybrid VS Code
Modeling Tool. TU Wien. https://model-engineering.info/publications/theses/
thesis-hammerschmied.pdf.

Harold, G. Ed.D. (2024). Database. Salem Press Encyclopedia [Press release]. https://res
earch.ebsco.com/c/lzo7om/viewer/html/kummripqzv

House, D., Kuang, H., Surendran, K., & Paul, C. (2021). Toward Fast and Reliable Active-Active
Geo-Replication for a Distributed Data Caching Service in the Mobile Cloud. Procedia
Computer Science, 191(7), 119-126. 10.1016/j.procs.2021.07.018

Ilić, M., Kopanja, L., Zlatković, D., Trajković, M. & Ćurguz, D. (2021) Microsoft Sql Server
and Oracle: Comparative Performance Analysis. 7th International conference
Knowledge management and informatics. https://kmi.vtsns.edu.rs/KMI_2021/radovi/
1-KMI_Informatika/KMI_informatika-1.5.pdf

Jatana, N., Puri, S., Ahuja, M., Kathuria, I., & Gosain, D. (2012). A Survey and Comparison
of Relational and Non-Relational Database. International Journal of Engineering
Research & Technology (IJERT), 1(6). https://www.academia.edu/download/76957411
/a-survey-and-comparison-of-relational-and-non-relational-database.pdf

Jyothi, J. (2022). Cassandra is a Better Option for Handling Big Data in a NoSQL Database.
International Journal of Research Publication and Reviews, 3(9), 880-883. 10
.55248/gengpi.2022.3.9.27

Kadam, D., Bhalwarkar, N., Neware, R., Sapkale, R., & Lamge, R. (2011). Oracle Real
Application Clusters. International Journal of Scientific and Engineering Research, 2(6).
https://www.bibme.org/apa/journal-citation/search?q=https%3A%2F%2Fwww.re
searchgate.net%2Fpublication%2F316510400_Oracle_Real_Application_Clusters

Khan, W., et al. (2023). SQL and NoSQL Database Software Architecture Performance
Analysis and Assessments—A Systematic Literature Review. Big Data Cognitive
Computing, 7(2), 97. 10.3390/bdcc7020097

Kolonko, K. (2018). Performance Comparison of the Most Popular Relational and
Non-Relational Database Management Systems. Blekinge Tekniska Högskola. https://
www.diva-portal.org/smash/get/diva2: 1199667/FULLTEXT02.pdf

Liu, Y., Kumar, R., Tripathi, A., Sharma, A., & Rana, M. (2022). The Application of Internet of
Things and Oracle database in the research of intelligent data management system.
Informatica, 46(3). 10.31449/inf.v46i3.4019.

Lopez, F.M.S., & Cruz, E.G.S.D.L. (2015). Literature Review about Neo4J Graph Database
as a Feasible Alternative for Replacing RDBMS. Journal of the Faculty of Industrial
Engineering, 18(2), 135. 307180380_Literature_review_about_Neo4j_graph_
database_as_a_feasible_alternative_for_replacing_RDBMS

Mehrabani, A. (2014). MongoDB High Availability (1st ed.). Packt Publishing, 2014. htt
ps://ebookcentral.proquest.com/lib/sunway/detail.action?docID=1753325

Minder, J., Brandenberger, L., Salamanca, L., & Schweitzer, F. (2024). Data2Neo-A Tool for
Complex Neo4J Data Integration. arXiv. arXiv:2406.04995

Mohan, R.K., Kanmani, R.R.S., Ganesan, K.A., & Ramasubramanian, N. (2014). Evaluating
NoSQL Databases for OLAP Workloads: A Benchmarking Study of Mongodb, Redis,
Kudu and Arangodb. arXiv. arXiv:2405.17731

Nawaz, R., & Soomro, T.R. (2013). Role of Oracle Active Data Guard in High Availability
Database Operations. International Journal of Applied Information System (IJIAS), 5(5).
10.5120/ijais13-450914

Noiumkar, P. & Chomsiri, T. (2014). A Comparison the Level of Security on Top 5 Open
Source Nosql Databases. The 9th International Conference on Information Technology
and Applications (ICITA2014), Sydney, Australia. https://www.researchgate.net/public
ation/301633978_A_Comparison_the_Level_of_Security_on_Top_5_Open_Source
_NoSQL_Databases

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security Issues in NoSQL
Databases. Proceedings of the 2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, USA, 541-547. 10.1109/Trust
Com.2011.70

Panpaliya, T. (2012). Benchmarking Mongodb Multi-Document Transactions in A Sharded
Cluster. Master’s Projects. 10.31979/etd.ykxw-rr89   

Pokorný, J. (2015). Graph Databases: Their Power and Limitations. IFIP International
Conference on Computer Information Systems and Industrial Management. 10.1007/
978-3-319-24369-6_5

Popescu, E., & Radu, A. (2020). A Comparative Study of Scalability and Performance in
NoSQL Databases for Big Data Storage and Retrieval. International Journal of Social
Analytics (IJSA), 5(12), 16–27. https://norislab.com/index.php/IJAHA/article/view/44

Punit, Shrivastava, V., & Pandey, A. (2014). A Comprehensive Study on Modern Database
Management Systems. International Journal of Research Publication and Reviews, 5(4),
2133-2136. https://ijrpr.com/uploads/V5ISSUE4/IJRPR24839.pdf

Rosberg, O. (2022). An Interactive Web Tool for Importing Data to a Graph Database.
Dissertation. https://www.diva-portal.org/smash/get/diva2: 1679807/FULLTEXT01.p
df

Sebastian-Coleman, L. (2022). Meeting the Challenges of Data Quality management (1st
ed.). Academic Press. https://doi.org/10.1016/C2019-0-03993-3

Shkokani, M., & Altamimi, A.M. (2020). Graph Database Security: Blockchain Solution and
Open Challenges. International Journal of Simulation: Systems, Science & Technology.
10.5013/IJSSST.a.21.01.09

Easwaramoorthy, et al.: Comparative Analysis of Database Systems

Information Research Communications, Vol 1, Issue 2, May-Aug, 2024 119

Shuang, W., et al. (2019). A Distributed Storage and Access Approach for Massive Remote
Sensing Data in MongoDB. International Journal of Geo-Information, 8(12), 533.
10.3390/ijgi8120533

Walters, G. (2011). Oracle Active Data Guard – Overview. Indiana Oracle Users Group. h
ttps://dmdc.unimap.edu.my/images/pdf/Active-Data-Guard-Overview.pdf

What is a Document Database? (2024, July 19). MongoDB. https://www.mongodb.co
m/resources/basics/databases/document-databases#:~:text=An%20intuitive%20d
ata%20model%20that,to%20evolve%20as%20application%20needs

Zhang, H., Chen, Z., Ooi, B.C., Tan K.L., & Zhang, M. (2015). In-Memory Big Data Management
and Processing: A Survey. IEEE Transactions on Knowledge and Data Engineering,
27(7), 1920-1948. 10.1109/TKDE.2015.2427795.

Cite this article: Sab CM, Ahmed KKM Scientometric Insights into Social Media Analytics: Trends and Impact in Communication Studies. Info Res Com.
2024;1(2):104-19.

